3 research outputs found

    A medium-grain method for fast 2D bipartitioning of sparse matrices

    Get PDF
    We present a new hypergraph-based method, the medium-grain method, for solving the sparse matrix partitioning problem. This problem arises when distributing data for parallel sparse matrix-vector multiplication. In the medium-grain method, each matrix nonzero is assigned to either a row group or a column group, and these groups are represented by vertices of the hypergraph. For an m x n sparse matrix, the resulting hypergraph has m + n vertices and m + n hyperedges. Furthermore, we present an iterative refinement procedure for improvement of a given partitioning, based on the medium-grain method, which can be applied as a cheap but effective postprocessing step after any partitioning method. The medium-grain method is able to produce fully two-dimensional bipartitionings, but its computational complexity equals that of one-dimensional methods. Experimental results for a large set of sparse test matrices show that the medium-grain method with iterative refinement produces bipartitionings with lower communication volume compared to current state-of-the-art methods, and is faster at producing them

    A geometric partitioning method for distributed tomographic reconstruction

    Get PDF
    Tomography is a powerful technique for 3D imaging of the interior of an object. With the growing sizes of typical tomographic data sets, the computational requirements for algorithms in tomography are rapidly increasing. Parallel and distributed-memory methods for tomographic reconstruction are therefore becoming increasingly common. An underexposed aspect is the effect of the data distribution on the performance of distributed-memory reconstruction algorithms. In this work, we introduce a geometric partitioning method, which takes into account the acquisition geometry and aims to minimize the necessary communication between nodes for distributed-memory forward projection and back projection operations. These operations are crucial subroutines for an important class of reconstruction methods. We show that the choice of data distribution has a significant impact on the runtime of these methods. With our novel partitioning method we reduce the communication volume drastically compared to straightforward distributions, by up to 90% for a number of cases, and furthermore we guarantee a specified load balance
    corecore